Some remarks on a generalization of the superintegrable chiral Potts model

نویسنده

  • R. J. Baxter
چکیده

The spontaneous magnetization of a two-dimensional lattice model can be expressed in terms of the partition function W of a system with fixed boundary spins and an extra weight dependent on the value of a particular central spin. For the superintegrable case of the chiral Potts model with cylindrical boundary conditions, W can be expressed in terms of reduced hamiltonians H and a central spin operator S. We conjectured in a previous paper that W can be written as a determinant, similar to that of the Ising model. Here we generalize this conjecture to any Hamiltonians that satisfy a more general Onsager algebra, and give a conjecture for the elements of S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Transfer Matrix of Superintegrable Chiral Potts Model as the Q-operator of Root-of-unity XXZ Chain with Cyclic Representation of Uq(sl2)

We demonstrate that the transfer matrix of the inhomogeneous N -state chiral Potts model with two vertical superintegrable rapidities serves as the Q-operator of XXZ chain model for a cyclic representation of Uq(sl2) with Nth root-of-unity q and representation-parameter. The symmetry problem of XXZ chain with a general cyclic Uq(sl2)-representation is mapped onto the problem of studying Q-opera...

متن کامل

The Onsager Algebra Symmetry of Τ -matrices in the Superintegrable Chiral Potts Model

We demonstrate that the τ (j)-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which w...

متن کامل

2 9 M ay 2 00 5 The Onsager Algebra Symmetry of τ ( j ) - matrices in the Superintegrable Chiral Potts Model

We demonstrate that the τ (j)-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of eight-vertex model for roots of unity and superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations , by which we extra...

متن کامل

The L(sl2) symmetry of the Bazhanov-Stroganov model associated with the superintegrable chiral Potts model

The loop algebra L(sl2) symmetry is found in a sector of the nilpotent BazhanovStroganov model. The Drinfeld polynomial of a L(sl2)-degenerate eigenspace of the model is equivalent to the polynomial [4, 5, 10–14] which characterizes a subspace with the Isinglike spectrum of the superintegrable chiral Potts model.

متن کامل

Finite-size energy levels of the superintegrable chiral Potts model

In the solution of the superintegrable chiral Potts model special polynomials related to the representation theory of the Onsager algebra play a central role. We derive approximate analytic formulae for the zeros of particular polynomials which determine sets of low-lying energy eigenvalues of the chiral Potts quantum chain. These formulae allow the analytic calculation of the leading finite-si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009